
On Evolving Organizational Models without Loosing Control on
Authorization Constraints in Web Service Orchestrations

Stefanie Rinderle-Ma, Maria Leitner
University of Vienna, Austria
Faculty of Computer Science

{stefanie.rinderle-ma, maria.leitner}@univie.ac.at

Abstract

Providing adequate access control is crucial for the
proper execution of any Web Service (WS) orchestration.
Typically, access rules and authorization constraints are de-
fined for a WS orchestration and are resolved over an orga-
nizational model at runtime in order to find authorized users
to perform orchestration tasks. As known from many prac-
tical studies, organizational models are frequently subject
to change (e.g., outsourcing or restructuring). Although the
effects of organizational changes on access rules have been
investigated so far, their effects on authorization constraints
remain still completely unclear, albeit violating authoriza-
tion constraints might lead to severe problems such as secu-
rity holes. In this paper, we systematically investigate the ef-
fects of organizational changes on authorization constraints
and propose different strategies to cope with possible viola-
tions. We evaluate our results along the most common types
of authorization constraints and discuss the impact of the
selected implementation choice.

1 Introduction

Access control has emerged as de facto standard for en-
suring authorized access in Process-oriented Information
Systems (POIS). In WS orchestrations, authorized agents
are determined at runtime based on access rules assigned
to the orchestration tasks (cf. [8]). Thus, access rules con-
stitute an interface between POIS and organizational mod-
els as depicted in Figure 1. However, for certain security
measures such as dynamic Separation of Duties (dSoD), the
specification of access rules might not be sufficient [15].
Assume, for example, that for two tasks A and B within
a WS orchestration, we want to assign a set of authorized
agents {Smith, Sharp}. This can be achieved by spec-
ifying a corresponding access rule. However, this does not
enforce that the agent performing task A has to be different

from the agent performing task B. Hence specifying ad-
ditional authorization constraints becomes necessary, lead-
ing to a co-existence between organizational models, access
rules, authorization constraints and WS orchestrations.

Existing approaches enable the specification and verifi-
cation of authorization constraints in POIS at design and
runtime [15, 3, 2, 1]. However, no approach has dealt with
verification of authorization constraints during change time.
As we know from various case studies [11], organizational
structures tend to change quite frequently in practice. Ex-
amples include outsourcing, merging of departments, or
adding new hierarchical layers within enterprises. In our
previous work [11, 9] we investigated the question of how
such organizational changes can be reflected within the un-
derlying information systems (Figure 1). More precisely,
we showed how access rules are affected by organizational
changes and how they can be adapted in order to avoid, for
example, security holes or quality problems in the sequel.

DBMS POISDBMS POIS

Access Rules Access Rules

DeleteEntity(O8)

O'=joinEntities(O4,O5) 

O3

O1

O2

O' O6 O7

Transformation

Organizational Model OM
O1

O4 O5 O6 O7 O8

Organizational
Entities

merge delete

Organizational Model OM‘

Authorization Constraints Authorization Constraints

Smith Sharp Smith

O2 O3

Figure 1. Access Control in POIS

Obviously, the effects of organizational changes on ac-
cess rules have to be controlled. What about their effects on
authorization constraints? Consider the dSoD as described
above. One organizational change that affects the dSoD
would be to lay agent Smith off. As a consequence, the

leitner
Textfeld
The final version was published in: Rinderle-Ma, S.; Leitner, M., "On Evolving Organizational Models without Losing Control on Authorization Constraints in Web Service Orchestrations," Commerce and Enterprise Computing (CEC), 2010 IEEE 12th Conference on , pp.128,135, 10-12 Nov. 2010 
http://dx.doi.org/10.1109/CEC.2010.17


leitner
Textfeld
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



a
l

OU=WebBank
Organizational Model OM:

is_subordinated is_subordinated

is subordinatedz
a
t
i
o
n
a

s
 
(
O
U
)

OU=CallCenter OU=Accounting OU=Marketing

is_subordinated

belongs_tobelongs_to belongs_to belongs_toO
r
g
a
n
i
z

U
n
i
t
s

Little

Bern

Black Green

Sharp

MossJones

Clark

Smith

Red

Lowe

g _g _ g _ g _

e
n
t
s

Bern SharpClark

Myers

Red

has has hashas has has has

A
g
e

R=CAgent_p R=CAgent_b

has has hashas has has has

specializes specializes specializes

e
s
(
R
)

R=CAgent R=Accountant R=AnalystR=SecretaryR
o
l
e

Figure 2. Organizational Model for Online Bank

separation of duties for tasks A and B would fail at run-
time. Taking the approach presented in [1], this violation
could be detected at runtime, as soon as task B is started. By
contrast, we argue that the driving force to detect such vio-
lations lies within the organizational change and not within
orchestration execution. Specifically, we argue that the vio-
lation can be detected as soon as the organizational change
happens, very likely before B will be started. This gives the
opportunity to pro-actively find solutions for the violation.

In addition, there are violations that cannot be dealt with
by runtime checks. This refers to all organizational changes
that cause inconsistencies within the associated access rules
(e.g., orphaned references) and thus lead to an adaptation
of the access rules in the sequel [11]. As we will show in
this paper, such indirect effects might require an adaptation
of authorization constraints as well in order to maintain a
controlled execution of the WS orchestrations.

Altogether, in this paper, we introduce a comprehensive
definition of organizational compliance, spanning WS or-
chestrations, organizational models, access rules, and au-
thorization constraints. Furthermore, we show how direct
effects of organizational changes can be detected and pro-
actively handled. We also show how organizational changes
indirectly affect authorization constraints after access rule
adaptations and how the affected authorization constraints
can be adapted accordingly. We evaluate our findings based
on the most common authorization constraints [12]. Fur-
thermore, we discuss different implementation choices for
access rules and authorization constraints.

Sections 2 introduces our running example and neces-

sary background information. Section 3 addresses direct ef-
fects of organizational changes on authorization constraints.
We show how authorization constraints can be adapted after
organizational changes in Section 4. Section 5 provides an
evaluation and presents implementation choices. Section 6
discusses related work and Section 7 closes with a summary
and outlook.

2 Access Control for WS Orchestrations

In this section, we introduce our running example to-
gether with background information necessary for under-
standing the remainder of the paper. In general, for WS or-
chestrations, access rules are specified for each task based
on organizational models in order to restrict access to
authorized agents. Commonly, an organizational model
OM is defined based on an organizational meta model
OMM . Figure 3 depicts the meta model used in this pa-
per which reflects Role-Based Access Control mechanisms,
i.e., enabling the use of organizational entities Roles,
Organizational Units, and Agents within organi-
zational models. Consider organizational model OM de-
picted in Figure 2: Roles characterize the authorization
to work on a certain task (e.g., Supervisor). Examples
for Organizational Units comprise WebBank and
CallCenter. Agents denote human or non-human re-
sources, e.g., Miller and Bern. Within organizational
models, entities are related to each other. Agents have roles
and belong to organizational units. Roles and organizational
units can be hierarchically structured. More precisely, roles



can be specialized into sub roles and organizational units
can be subordinated to other organizational units.

Organizational
Unit Agent Role

is subordinated

has

specializes

belongs to

(0,1)(0,n)

(0,n) (0,1) (0,n) (0,n)

(0,n)(0,1)

Figure 3. Organizational Meta Model

The WS orchestration in Figure 4 consists of four ac-
tivities that are sequentially ordered. For each activity, an
access rule is specified that defines the set of authorized
agents for this activity. For activity collect Data, for
example, access rule AR1 1 specifies that only agents hav-
ing role Secretary and belonging to organizational unit
Marketing are authorized to perform this activity. Ac-
cording to [11], access rules are logical expressions that
consist of elementary access rules
EAR ≡ (EAR1 ←− Role = r)
| (EAR2 ←− Organizational Unit = o)
| (EAR3 ←− Role+ = r)
| (EAR4 ←− Organizational Unit+ = o)

where the + notation refers to the entity and all its subor-
dinated entities. Elementary access rules can be combined
using logical connectors AND, OR, and NOT. AR1 1 is an
example for an access rule consisting of two elementary ac-
cess rules combined by AND (cf. Figure 4).

a) Orchestration Schema S1:

collect
Data

prepare
Data

analyze
Data approveData Data Data

AR1 1AR1_1 
(R=Secretary AND 

OU=Marketing) 

AR1_2 
(R=Analyst)

AR1_3
(R=Analyst)

AR1_4 
(R=Supervisor)

b) Valid Agent Sets:
• VAS(OM,  AR1_1) = {Moss}
• VAS(OM, AR1_2) = {Smith, Sharp}

Activity

Access Rule
• VAS(OM, AR1_3) = {Smith, Sharp}
• VAS(OM, AR1_4} = {Miller}

) h d fc) Authorization Constraint – dynamic Separation of Duties:
c1 = ({prepareData, analyzeData}, 2, 1)
Meaning c1: Agent performing prepareData different from

A ent performin l D tAgent performing analyzeData

Figure 4. Marketing Process (BPMN Notation)

Access rules are defined for WS orchestration schemas at
design time. At runtime, orchestration instances are started
and executed based on orchestration schemas and the spec-
ified access rules are resolved over the underlying organi-
zational model. Specifically, for orchestration instance I
and for task t, assigned access rule ARt is resolved over un-

derlying organizational model OM into set of valid agents
VAS(OM, ARt). In Figure 4, access rule AR1 2 is as-
signed to task prepare Data. The agents having role
Analyst based on OM are Smith and Sharp and thus
VAS(OM, AR1 2) = {Smith, Sharp}. As soon as
prepare Data is activated, the respective work item is
offered to Smith and Sharp in their worklists. If Smith
then selects prepare Data from her worklist, the cor-
responding work list entry for Sharp is removed from his
worklist. We denote the agent who selected and worked on
task t in an orchestration instance I as Performer(t,I)
of t in I .

Obviously, it is not possible to resolve certain authoriza-
tion constraints based on access rules [2]. Consider ac-
tivities prepare Data and analyze Data, for which
their valid agent sets both comprise agents Smith and
Sharp. Based on associated access rules AR1 2 and
AR1 3 we cannot express that these activities should be
controlled by a four eye principle (dSoD), but need to im-
pose additional authorization constraint c1. In order to de-
fine authorization constraint c, we adopt the notion pro-
posed in [15].
c := (T, n,m) where T denotes the set of orchestration
tasks c refers to, n ∈ N denotes the minimal number of
agents associated with c and m ∈ N denotes the maximum
number of tasks an associated agent can work on.

AR2_3 
(R=Accountant) 

AR2_4 
(R=Accountant)

a) Orchestration Schema S2:
contract check

interested

call consult signX X

interested

not_interested

AR2_1 
( AR2 2 AR2 5(R=Secretary AND 
OU=Accounting) 

AR2_2 
(R=CAgent_p) 

AR2_5 
(R=Accountant)

b) Valid Agent Sets:b) Valid Agent Sets:
VAS(OM, AR2_3) = VAS(OM, AR2_4) = 
VAS(OM, AR2_5} = {Jones, Red, Green} X XOR-Split/Join

Activity Access Rule

c) Authorization Constraint – dynamic separation of duties:
c2 = ({sign, check, contract}, 3, 1) 
Meaning c2 : Agent performing sign different from Agent performing check differentMeaning c2 : Agent performing sign different from Agent performing check different 

from Agent performing contract

Figure 5. Contract Process (BPMN Notation)

In Figure 5, for example, authorization constraint c2 de-
fines that for activities contract, check, and sign, at
least three agents have to be assigned, where each agent
is authorized to perform exactly one of these activities. In
other words, c2 defines a six eyes principle (dSoD) in this
example.

As many practical examples show, changes of the orga-
nizational structures are quite common in practice [11]. Ta-
ble 1 summarizes a selection of change operations on or-
ganizational models as introduced in [9]. By using these



change operations we can, for example, create a new role
or delete an existing organizational unit. The effects of or-
ganizational change operations on access rules have been
formally defined based on the effects on the corresponding
valid agent sets [9].

Table 1. Change Operations on Organizational Mod-
els (Selection)

Change ∆ transforms organizational model OM into org. model OM’:
CreateEntitiy(OM, eId, eType) = OM’

adds a new organizational entity id of entity type eType to OM
DeleteEntity(OM, e) = OM’

deletes entity e from OM
CreateRelation(OM, e1, e2, relType) = OM’)

adds a new relation between org. entities e1 and e2 of type relType to OM
DeleteRelation(OM, relation) = OM’

deletes relation relation from OM
ReAssignRelation(OM, r, e, eNew) = OM’

reassigns relation r entity e in OM to entity eNew in OM’
JoinEntities(OM, e1, e2, nId) = OM’

merges two entities e1 and e2 into new entity nId of same entity type
SplitEntity(OM, eOld, e1, e2) = OM’

splits organizational entity eOld into new entities e1 and e2 of same type

Consider Figure 6 where organizational change ∆ has
been applied to OM resulting in new model OM ′. ∆ con-
sists of several DeleteRelation(...) operations and
one DeleteEntityRelation(...) in order to re-
move agent Sharp. Furthermore, entity Accountant is
split into two new entities SeniorAcc and JuniorAcc.

OU=WebBank
Organizational
Model OM‘

is_subordinated

is_subordinated

OU=Accounting OU=Marketing

Model OM
(Detail):

belongs_to belongs_to belongs_to

Black Green

Sharp

MossJones Smith

Red

hashas has has has

R=JuniorAccR=SeniorAcc

R=Accountant R=AnalystR=Secretary

Organizational Change Δ = 
(DeleteRelation(OM,  (Analyst, Sharp)), 

DeleteRelation(OM, Marketing, Sharp)), 
DeleteEntity(OM Sharp)DeleteEntity(OM, Sharp), 

SplitEntity(OM, Accountant, Senior Acc, JuniorAcc))

Figure 6. Evolution of Organizational Model

3 Organizational Changes Directly Affecting
Organizational Compliance

In this section, we address the question of organizational
compliance in general, and specifically after changes of the
underlying organizational model.

3.1 Organizational Compliance

Access rules are the de facto standard to establish an in-
terface between organizational models and WS orchestra-
tions in existing POIS. Authorization constraints are defined
on top of access rules in order to impose dynamic rules on
valid agent sets. Hence, in order to come up with a com-
prehensive view on proper access control for WS orches-
trations, we have to consider all aspects – organizational
models, access rules, authorization constraints, and WS or-
chestration within one verifiable notion. Thus, we define or-
ganizational compliance in the following which establishes
the connection between all these aspects.

Definition 1 (Compliance of Organizational Models)
Let OM ∈ OM be an organizational model and C be a set
of authorization constraints defined over OM (for a set of
WS orchestrations S). Then:

OM is compliant with C for S ∈ S, iff ∀ c ∈ C:
c = (T, n, m) is valid over OM for S, i.e.,
∀ t ∈ T : |

⋃
tVAS(OM, ARt)| ≥ n

where VAS(OM, ARt) denotes the set of valid agents
for access rule ARt over OM .

Consider authorization constraint c2 = ({sign,
check, contract}, 3, 1) as depicted in Figure 5. Ac-
cess rules AR2 3, AR2 4, AR2 5 all have the same
valid agent set VAS(OM, AR2 i) = {Jones, Red,
Green} (i = 3, 4, 5). Thus, |

⋃
iVAS(OM, ARi)| = 3

holds and consequently c2 is valid for S over OM .
When looking closer at Definition 1 and the above men-

tioned example, we see in task set of c2 for all tasks that
the access rules and consequently the valid agent sets are
equal. Hence, the union over all valid agent sets trivially
also equals the valid agent set of each of the access rules.
An implicit assumption is that we only check for organiza-
tional compliance of authorization constraints that are im-
posed when access rules cannot express dynamic restrici-
tions on the valid agent sets anymore [8]. An example is
dSoD. By contrast, static Separation of Duties (sSoD), can
be expressed on basis of access rules. For two tasks, for ex-
ample, we define different access rules for each of the tasks
where the corresponding valid agent sets are disjoint.

The interesting case in connection with Definition 1 is
the one where dSoD is imposed for a set of tasks for which
the access rules are not necessarilty describing the same



valid agent sets, but the intersection of the valid agent set is
non-empty. This is particularly true when agents have more
than one role or belong to several organizational units. Con-
sider the example depicted in Figure 7 where agent Jack
has roles R1 and R2. To check whether OM* is compli-
ant with c*, it is not sufficient to consider the valid agent
set of one of the access rules, since they overlap, but are
not the same. In fact, by considering the union of the valid
agent sets of all access rules, we can decide that c* is not
compliant with OM*.

R=R1 R=R2
ARt1 R=R1 ⇒ VAS(OM*, AR1) = {Jack}

( ) { }OM*: R=R1 R=R2

Jack Brent

ARt2 R=R2 ⇒ VAS(OM*, AR2) = {Jack, Brent}
ARt3 R=R2 ⇒ VAS(OM*, AR3) = {Jack, Brent}

c* = ({t1, t2, t3}, 3, 1)

OM :

c   ({t1, t2, t3}, 3, 1)

Figure 7. Overlapping Valid Agents Sets

Organizational compliance can be checked at design
time by comparing the specification of each authorization
constraint with the set of valid agents for the associated
access rule in a WS orchestration S. If no organizational
change is conducted, it is guaranteed that the authorization
constraints can be fulfilled at runtime. As pointed out in
[15], it has to be additionally ensured that authorization con-
straints are enforced, e.g., based on checking their history.

3.2 Direct Organizational Change Effects

So far, existing approaches have focused on ensuring
compliance of organizational models at design and runtime,
but not at change time. However, as discussed in [11],
changes of the organizational model happen quite often in
practice and might lead to changed valid agent sets. As con-
sequence, organizational changes might not only harm ac-
cess rules, but also organizational compliance. The latter
aspect is addressed within this paper for the first time.

As specified in Definition 1, organizational compliance
is violated if the cardinality of the united valid agent sets of
the associated access rules decreases under a certain thresh-
old. Thus, organizational changes are potentially critical
if they lead to a reduction of the valid agent sets of access
rule assigned to tasks which are also subject to authorization
constraints. Consider the organizational change that deletes
agent Sharp from OM as depicted in Figure 4. This
change leads to a reduction of the valid agent set of access
rules AR1 2 and AR1 3. In turn, since AR1 2 and AR1 3
are associated with tasks prepare Data and analyze
Data that are subject to authorization constraint c1 this or-
ganizational change might be potentially critical. Checking
Definition 1, we see that for c2 the threshold of n = 2 is not
reached anymore, since |

⋃
i=2,3 VAS(AR i, OM)| = 1 < 2.

In [9], we have elaborated on how valid agent sets
change for all different kinds of organizational change op-

erations and access rules. As the above example might
seem straightforward, there are more interesting cases.
Think, for example, of a change operation which reassigns
agent Sharp from having role Analyst to having role
Accountant. Then the effects on the associated valid
agent sets are not that obvious. However, taking the re-
sults form [9], it can be precisely determined, how the valid
agent sets are affected by organizational changes. Particu-
larly, we focus on reduction of valid agent sets since this
is the critical case with respect to organizational compli-
ance. Contrary to reduction, expanding valid agent sets is
not harming organizational compliance at all. Think, for
example, of a change that inserts a new agent Parker into
OM by assigning Parker to role Analyst. Then, the
valid agent set for tasks prepare Data and analyze
Data becomes bigger and the separation of duty constraint
c2 can still be fulfilled.

Applying the findings presented in [9] to control
effects of organizational changes on organizational
compliance, we can conclude the following results:
creation and deletion of entities is always accom-
panied by associated CreateRelation(...),
ReassignRelation(...), or
DeleteRelation(...) operations (cf. Table 1), since
new entities have to be embedded into the overall context
of the organizational model and entities to be deleted
have to be resolved from the organizational model first.
In Figure 4, not the final deletion of agent Sharp is the
critical change operation, but the precedent deletion of
the relation connecting Sharp and role Analyst, i.e.,
DeleteRelation(OM, (Analyst, Sharp)). As
soon as Sharp is not related to Analyst anymore, the
valid agent sets of access rules AR1 2 and AR1 3 are
reduced. Hence, in order to analyze effects on organiza-
tional compliance, it is sufficient to investigate the effects
of changes on relations within organizational models. As
shown in [9], for access rules that do not contain any
negation, the application of CreateRelation(...)
is uncritical with respect to a reduction of the valid
agent sets. By contrast, DeleteRelation(...)
and ReassignRelation(...) operations might
reduce valid agent sets of affected access rules and
consequently the affect authorization constraints as
well. Thus if any DeleteRelation(...) or
ReassignRelation(...) operation is applied to an
organizational model OM that is basis to some authoriza-
tion constraint c, organizational compliance of OM with
respect to c must be re-evaluated based on Definition 1.
The re-evaluation can be automatically done by the system,
resulting in reports on which organizational changes have
caused compliance violations. This is particularly helpful
for complex organizational models with hundreds or
thousands of access rules and authorization constraints.



4 Indirect Compliance Violations via Access
Rule Adaptations

As discussed in Section 3, certain organizational change
operations might have direct effects on organizational com-
pliance by reducing the set of valid agents of associated
access rules. One example is DeleteRelation(OM,
(Analyst, Sharp)) in Figure 6, directly affecting or-
ganizational compliance of OM with c1 for WS orchestra-
tion S1 (cf. Figure 4).

By contrast, organizational change
SplitEntity(OM, Accountant, SeniorAcc,
JuniorAcc) (cf. Figure 6) does not directly affect
authorization constraint c2 for orchestration S2 as depicted
in Figure 5. Specifically, after changing organizational
model OM , the effects on c2 cannot be directly deter-
mined. After splitting role Accountant into two new
roles JuniorAcc and SeniorAcc access rules AR2 3,
AR2 4, and AR2 5 cannot be resolved over changed
organizational model OM ′ anymore. Reason is that for all
access rules referring to role Accountant, an orphaned
reference is resulting on changed organizational model
OM ′. Hence, no statement on organizational compliance
is possible before the access rules have been adapted. Note
that adaptation of affected access rules is indispensable in
order to avoid any undesired behavior of the system such
as offering activities to non-authorized agents. In [10, 11],
we have proposed the following adaptation strategies (cf.
Table 1) for access rules after organizational changes
JoinEntities(...) and SplitEntity(...):1

• JoinEntities(OM, e1, e2, nId) = OM’:
∀ access rules AR with
AR ← eType=e1 or AR ← eType=e2:

replace AR by AR’ ← eType = nId
(e1, e2, and nId of type eType)

• SplitEntity(OM, eOld, e1, e2) = OM’:
∀ access rules AR with AR ← eType=eOld:

replace AR by AR1 ← eType=e1
or AR2 ← eType=e2

where eType ∈ {Agent, Role, OrgUnit}
Please note that we abstract from negated terms

within access rules. Picking the adaptation strategies for
SplitEntity(...) operation, the adaptation of access
rules AR2 3, AR2 4, and AR2 5 states that the adapted
access rules will refer to either role JuniorAcc or role
SeniorAcc instead of referring to role Accountant.
Unfolding all possible combinations, adaptation could the-
oretically result in 8 different scenarios (all activities are as-
signed to agents having role SeniorAcc, all are assigned

1For other organizational change operations such as
CreateEntity(...) no access rule adaptations become neces-
sary. Note that for DeleteEntity(...) (semi-)automatic adaptation
strategies are hard to specify without knowing the application context.

to one having role JuniorAcc and so on). Let us assume
that based on functional requirements, for task contract
the assigned role should be adapted to JuniorAcc and
for task sign to SeniorAcc. Hence dSoD between tasks
contract and sign is not required anymore, since as-
signing these tasks to different roles already results in static
separation of duties. After adapting the access rules ac-
cordingly, VAS(OM’, AR2 3’) = {Green} is disjoint
to VAS(OM’, AR2 5’) = {Jones, Red}. Hence, task
contract will be always offered to a different agent than
task sign.

As a consequence, authorization constraint c2 must be
adapted . The question is now, to which role task check
is to be assigned. If it is assigned to role JuniorAcc, the
adapted authorization constraint c2′ should regulate dSoD
between check and contract. If check is assigned to
role SeniorAcc, it dSoD between check and sign is
required within c2′′, i.e.:

• AR2 4’←− R=JuniorAcc =⇒
c2’ = ({contract, check}, 2, 1)

• AR2 4’’←− R=SeniorAcc =⇒
c2” = ({sign, check}, 2, 1)

Checking now compliance of both adapted authorization
constraints c2′ and c2′′ over changed organizational model
OM ′ (cf. Figure 6), we see that OM ′ is not compliant
with c2′, but it is compliant with c2′′. Thus, when there are
no functional or other requirements, it would be decided to
adapt c2 to c2′′ instead of c2′, since adaptation to c2′′ main-
tains organizational compliance without any further actions.
This information can be of valuable help when adapting au-
thorization constraints.

5 Evaluation

In this section, we discuss the applicability of the above
mentioned strategies for the most prominent types of autho-
rization constraints as discussed in [12]. We also provide
considerations on implementation choices for authorization
in WS orchestrations.

5.1 Authorization Constraint Types

DSoD and Retain Familiar (RF) both require a certain
number of agents to work on the assigned tasks. Retain fa-
miliar specifically requires at least one agent to work on a
set of tasks. Hence, organizational change operations that
possibly reduce valid agent sets are possibly critical for the
fulfillment of dSoD and RF constraints and the checking
mechanisms provided in Section 3 can be applied to de-
tect violations as soon as possible. RF constraints on top
of access rules are imposed if the underlying access rules



describe different valid agent sets. Hence, in case organiza-
tional changes require adaptation of access rules, RF con-
straints might be subject to adaptation as well. Altogether,
the findings of this paper can be directly applied to dSoD
and RF that constitute the most commonly applied autho-
rization constraints in practice.

Cardinality constraints (CC) require that a certain mini-
mum or maximum number of organizational entities is as-
signed to an orchestration model or to an activity. One ex-
ample is the following constraint: ”There must be at least
three sub roles of role Doctor assigned to the chemother-
apy treatment” (adapted from [1]). This CC cannot be for-
malized using the notion proposed by [15] since it refers to
a minimum number of Roles instead of Agents. Hence,
we adapt the notion proposed in [15] to

c = (T, eType=eID, [< | ≤ | = | ≥ | >], n)
with
• T denotes the task set, c refers to. If T is the complete

task set of a WS orchestration S, c has to apply for S
• entity type eType ∈ {Agent, Role, OrgUnit}
• n denotes the required number of assigned entities
of type eType.

Then, the cardinality constraint stated above can
be formalized as c= (T, Role=Doctor(+), ≥, 3)
where T corresponds to the task set of S. Recall that (+)
refers to the sub roles of role Doctor in corresponding or-
ganizational model OM. Obviously, if OM is changed by
deleting sub roles of role Doctor, cardinality constraint c
might be potentially violated. Adding more sub roles is not
critical. Even if a cardinality constraint possesses maximum
boundaries, adding organizational entities will not violate
these boundaries.

Consequently, if an organizational model is changed by
deleting an organizational entity of type eType, the set of
imposed cardinality constraints must be checked for refer-
ring to organizational entities of this type. In case a viola-
tion is detected, the question is how to deal with the viola-
tion. One possibility is to adjust the cardinality constraint
to the new organization model. Assume that for the above
example, after deleting one of the sub roles of Doctor,
we heal the resulting violation of c by adjusting c to c’ =
(T, Role=Doctor(+), ≥, 2). However, as a con-
sequence, the information is lost that we originally wanted 3
sub roles to be assigned to WS orchestration S. Thus, adapt-
ing the authorization constraint must not be done automat-
ically, but the system should report the violation to the or-
chestration designer, possibly together with a suggestion for
adapting the authorization constraints.

5.2 Impact of Implementation Choice

So far we have assumed that authorization constraints
are stated on top of access rules and organizational models.

However, authorization constraints can be also modeled and
enforced as dependent access rules defined at task level (so
called task level implementation). As an example take Fig-
ure 4, where task analyze Data must not be executed
by the same analyst as for prepare Data. We can for-
mulate the resulting dSoD constraint c1 instead at task level
as follows:
Role = (Analyst) AND

(Performer(prepareData,I) 6= Performer(analyzeData,I))

for some orchestration instance I. Note that a performer
is an agent who selects and works on task t in an orchestra-
tion instance I .

Interestingly, it appears that there is a difference in im-
plementation between scientific research and commercial
solutions. We could only discover constraint base imple-
mentations in research, i.e. Bertino et al. [1] and Se-
cureFlow [6] whereas commercial and open source appli-
cations are implementing authorization constraints at task
level (e.g., by using individual task definitions and pro-
grammatic extensions) [12]. Specifically, WebSphere MQ,
FLOWer, iPlanet, and YAWL are realizing separation of du-
ties by task level dependencies or indirectly by user access
rights (i.e. COSA) [12, 13]. Most commercial applica-
tions have implemented the four eyes principle (cf. role
Analyst in Figure 4). Few application systems (i.e. Web-
sphere MQ) are able to apply separation of duties on more
than two corresponding tasks (cf. role Accountant in
Figure 5).

In summary, organizational changes do affect authoriza-
tion constraints whether implemented on top of the access
rules or implemented within access rules at task level. In the
latter case, the findings presented in [9] have to be extended
to such dependent access rules.

6 Related Work

How to specify and enforce authorization constraints
within workflow systems is shown in [1]. Specifically, au-
thorization constraints are checked for each task execution.
Furthermore, a planning algorithm suggests possible as-
signment adaptations for violated constraints. The work-
flow authorization framework presented in [3] uses the con-
cept of roles, organizational levels and authorization con-
straints. The enforcement of authorization constraints is
executed by Event-Condition-Action rules. An extension
for BPMN has been proposed to support workflow resource
patterns [15]. We used the constraint formalization as pre-
sented in the paper and adapted it for cardinality constraints
in our paper. Dynamics in organizations are examined in
[14] where they identify top-down (i.e. structural changes)
and bottom-up dynamics (i.e. autonomous agents). Whilst
their approach focuses on the adoption of organizational
rules into the decision making process of agents (bottom-



up), we consider evolving organizational models and how
they affect existing authorization constraints (top-down).
Furthermore, this has been adapted to web services [5].
A methodology for modeling evolving cross-organizational
business processes is presented in [4] considering among
others structural changes mainly delegation or assignment
of interaction requirements to new or existing agents.

Altogether, the challenge of integrating and enforcing
authorization in POIS has been addressed by different ap-
proaches. In our previous work, we have elaborated on the
effects of organizational changes on access rules [9] as well
as access rule changes themselves [10, 11]. However, to our
best knowledge, the question of how organizational change
affects authorization constraints as presented in this paper
has not been addressed by any other approach so far.

7 Summary and Outlook

In this paper, we introduced organizational compliance
as central concept taking into consideration the coexistence
of organizational models, access rules, authorization con-
straints, and WS orchestrations. We showed how adapta-
tions of the organizational model directly affect organiza-
tional compliance, for example, when agents are reassigned
to different roles. Furthermore, we elaborated on how in-
direct effects of organizational models might lead to inva-
lidity of associated authorization constraints. Specifically
organizational changes might require an adaptation of ac-
cess rules and subsequently necessitate adaptations of au-
thorization constraints as well. We showed that without tak-
ing adequate actions, access control for WS orchestrations
might be at stake after organizational changes. The find-
ings were evaluated based on common types of authoriza-
tion constraints and the impact of different implementation
choices (separating authorization and access control versus
integrated task-dependent implementation) was discussed.

In future work, we plan to integrate an adaptive organiza-
tional model component with our SeaFlows framework for
the definition and verification of compliance constraints in
POIS [7]. In addition, we want to compare the separated im-
plementation of access control and authorization with task-
dependent implementation. Furthermore, we aim at extend-
ing our findings to process choreographies describing col-
laborations between different business partners.

Acknowledgements

The work presented in this paper has been partly con-
ducted within the OCIS project which is funded by the Ger-
man Research Foundation (DFG).

References

[1] E. Bertino, E. Ferrari, and V. Alturi. The specification and
enforcement of authorization constraints in WFMS. ACM
Transactions on Information and System Security, 2(1):65–
104, 1999.

[2] R. A. Botha and J. H. P. Eloff. Separation of duties for ac-
cess control enforcement in workflow environments. IBM
Systems Journal, 40(3):666–682, 2001.

[3] F. Casati, S. Castano, and M. Fugini. Managing workflow
authorization constraints through active database technol-
ogy. Information Systems Frontiers, 3(3):319–338, 2001.

[4] N. Desai, A. K. Chopra, and M. P. Singh. Amoeba:
A methodology for modeling and evolving cross-
organizational business processes. ACM Trans. Softw. Eng.
Methodol., 19(2):1–45, 2009.

[5] F. Dignum, V. Dignum, J. Padget, and J. Vazquez-Salceda.
Organizing web services to develop dynamic, flexible, dis-
tributed systems. In Proc. Int’l Conf. Information Integra-
tion and Web-based Applications & Services, pages 225–
234, 2009.

[6] W. Huang and V. Atluri. SecureFlow: a secure web-enabled
workflow management system. In Proc. ACM Workshop on
Role-based access control, pages 83–94, 1999.

[7] L. Ly, S. Rinderle-Ma, and P. Dadam. Design and verifica-
tion of instantiable compliance rule graphs in Process-Aware
information systems. In Proc. Int’l Conf. on Advanced Sys-
tems Engineering, pages 9–23, 2010.

[8] J. Mendling, K. Ploesser, and M. Strembeck. Specifying
separation of duty constraints in BPEL4People processes.
In Springer, editor, Proc. Int’l Conf. Business Information
Systems (BIS 2008), volume 7 of LNBIP, pages 273–284,
2008.

[9] S. Rinderle and M. Reichert. A formal framework for adap-
tive access control models. Journal on Data Semantics,
(IX):82–112, 2007.

[10] S. Rinderle-Ma and M. Reichert. Managing the life cycle of
access rules in CEOSIS. In Proc. Int’l Enterprise Computing
Conference, pages 257–266, 2008.

[11] S. Rinderle-Ma and M. Reichert. Comprehensive life cy-
cle support for access rules in information systems: The
CEOSIS project. Enterprise Information Syst., 3(3):219–
251, 2009.

[12] N. Russell, W. M. van der Aalst, A. H. ter Hofstede, and
D. Edmond. Workflow resource patterns: Identification, rep-
resentation and tool support. In Proc. Int’l Conf. Advanced
Information Systems Engineering, pages 216–232. Springer,
2005.

[13] A. H. M. ter Hofstede, W. M. P. van der Aalst, and
M. Adams. Modern Business Process Automation. Springer,
Nov. 2009.

[14] B. van der Vecht, F. Dignum, J. Meyer, and V. Dignum. Or-
ganizations and autonomous agents: Bottom-Up dynamics
of coordination mechanisms. In Coordination, Organiza-
tions, Institutions and Norms in Agent Systems IV, pages
17–32. Springer, 2009.

[15] C. Wolter and A. Schaad. Modeling of Task-Based autho-
rization constraints in BPMN. In Business Process Manage-
ment, pages 64–79. Springer, 2007.




