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Abstract—Quality-of-Service (QoS) aware service selection
problems are a crucial issue in both Grids and distributed,
service-oriented systems. When several implementations per
service exist, one has to be selected for each workflow step.
Several heuristics have been proposed, including blackboard
and genetic algorithms. Their applicability and performance
has already been assessed for static systems. In order to cover
real-world scenarios, the approaches are required to deal with
dynamics of distributed systems. In this paper, we propose
a representation of these dynamic aspects and enhance our
algorithms to efficiently capture them. The algorithms are
evaluated in terms of scalability and runtime performance,
taking into account their adaptability to system changes. By
combining both algorithms, we envision a global approach to
QoS-aware service selection applicable to static and dynamic
systems. We prove our hypothesis by deploying the algorithms
in a Cloud environment (Google App Engine) that allows to
simulate and evaluate different system configurations.

Keywords-Quality of Service, Service Selection, Genetic Al-
gorithm, Blackboard.

I. INTRODUCTION

In distributed, service-oriented systems, it is a crucial
task to efficiently select and compose services required to
respond to a given request. In fact, in many modern, mainly
web-based systems, several instances of an abstract service
coexist and compete. While their exposed functionality is
identical, these instances differ in non-functional attributes
such as performance measures, availability and reliability.
When constructing a concrete workflow that is executed as
response to a request, each service of the abstract workflow
has to be instantiated with what is in the following called a
deployment. This has to be done in a way that is optimizing
(seeking for a minimum or a maximum) a custom utility
function – the exact objective functions depend on the
specific problem. Mathematically, this can be mapped to
a multi-dimension multi-choice knapsack problem – when
only considering attributes of the deployments – or to a
shortest-path problem, when also considering attributes of
the links between two deployments. Several heuristics have
been proposed to solve these QoS-aware service selection
problems known as NP-hard.

In our previous work [1], [2], we studied the applicability
of blackboard and genetic algorithms to solve QoS-aware

service selection problems and compared them in terms of
runtime, scalability and quality of the solutions. We showed
that the blackboard approach outperforms the genetic al-
gorithm for small problem spaces, while the situation is
reversed for bigger problem spaces, although generally the
blackboard reaches solutions of slightly better overall qual-
ity. We also proposed parallel versions of both algorithms
to improve the overall runtime performance for big problem
spaces.

For the simulations that were carried out, we assumed
a static environment, consisting of a number of abstract
services with respective deployments implementing them,
and performance attributes for all these deployments as
well as for the network links between them. However, real
distributed systems are not usually static in nature. They
are rather dynamic in various aspects. Deployments can
be added or removed from the system, and non-functional
attributes can change quite often. A typical example for such
a highly dynamic attribute is the server load. Approaches for
solving such problems should thus be able to adapt to these
dynamics.

In this paper, we propose how dynamic aspects of a
system can be captured, described and analyzed. Based on
this and on more detailed findings regarding performance
and scalability of the blackboard and genetic algorithm,
we propose a hybrid approach that takes advantage of the
strength of both approaches. The vision is to provide a
global and adaptive approach to QoS-aware service selection
problems, not tailored to only a specific application domain,
but capable of capturing system behavior and reacting to it.
To carry out the evaluations, the Cloud-based optimization
framework on the Google App Engine [3], introduced in [2],
has been extended. To motivate the hybrid approach, we
take advantage of having two very different application en-
vironments. One is the Datagrid based distributed metadata
system from the ATLAS Experiment [4], a particle detector
experiment constructed at the Large Hadron Collider (LHC)
at the European Organization for Nuclear Research (CERN).
The second one is a highly dynamic University information
system, consisting of a series of distributed, heterogeneous
applications [5].

The remainder of this paper is organized as follows.
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Section II discusses related work in the area of QoS-
aware service selection problems, emphasizing approaches
using blackboard and genetic algorithms. In Section III, the
motivation for our work is emphasized, and two concrete ap-
plication scenarios are described and compared. Section IV
introduces a way of representing the system status and
capturing dynamics. A blackboard and genetic algorithm are
introduced in Section V and evaluation results for different
system setups are discussed. Based on these findings, a novel
hybrid and adaptive approach for service selection problems
is proposed in Section VI. Finally, Section VII concludes the
work and presents an outlook on future research directions.

II. RELATED WORK

Several heuristic approaches have been presented and
evaluated for solving QoS-aware service selection problems.
Recently, several authors have applied different genetic
algorithms for solving those NP-hard problems [6], [7], [8].
Both single- and multiple-objective algorithms have been
discussed. Few comparative studies exist, evaluating a ge-
netic algorithm against other approaches. An example is the
work by Jaeger and Mühl [7]. The authors compare a genetic
algorithm in terms of QoS ratio, performance and scalability
to three other algorithms, one exhaustive search and two
heuristics (branch-and-bound and local hill-climbing). The
results show that the genetic algorithm outperforms the other
two in terms of performance and scalability, but no further
conclusions are made. In [9], several heuristic approaches
for the selection of web services are evaluated.

Only few publications address the application of black-
boards to the QoS-aware service selection problem. In
Wanek et al. [10] and Schikuta et al. [11] the authors
use blackboards for optimizing Grid workflows regarding
dynamically changing resources and conditions. Lepouras
et al. [12] present an active ontology-based blackboard
architecture for the discovery of Web services. In Nolle et
al. [13] a distributed algorithmic and rule-based blackboard
system (DARBS) is presented, where knowledge sources
are implemented as parallel processes. The blackboard it-
self comprises a centralized database storing the acquired
knowledge and making use of a multitude of agents.

To the best of our knowledge, no comparative study or
hybrid approach combining genetic and blackboard algo-
rithms has been proposed until now. However, other hybrid
approaches have been proposed for the QoS-aware service
selection problem, mainly hybrid evolutionary algorithms.
Tang and Ai [14] propose a hybrid genetic algorithm based
on a local optimizer that improves the fitness value reached
and is capable of handling a large number of constraints. The
focus in this work is mainly on improving the fitness value
– the computation time of the presented hybrid algorithm
is slightly higher than of “standard” genetic algorithms.
This approach is different from ours because it merges two
approaches into a single algorithm, whereas we propose a

framework capable of “choosing” the best algorithm for a
given problem. Canfora et al. [6] compare a genetic algo-
rithm to integer programming to solve QoS-aware service se-
lection problems. The results show that integer programming
outperforms the genetic algorithm for a small number of
concrete services. For workflows comprising more services,
the genetic algorithm keeps its performance almost constant,
whereas the time for the integer programming grows expo-
nentially. The authors conclude that both algorithms have
their applicability in different scenarios, but they do not
propose an approach combining both algorithms.

III. MOTIVATIONAL EXAMPLES

Data- and resource intensive experiments, such as High-
Energy Physics (HEP) experiments, require large scale com-
puting capabilities for various applications. In modern web-
based service-oriented systems, appropriate scaling can be
achieved by distributing services and data [15], [16], thus
distributing the requests and load. Batch processing and
analysis jobs in HEP experiments mainly run and rely on
Grid infrastructures. An example for such an application,
building the motivation for our work, is the ATLAS TAG
system. ATLAS is a detector of the Large Hadron Collider
(LHC) hosted at CERN, the European Organization for
Nuclear Research. The overall goal is to discover new
physics by analyzing a massive amount of data from proton-
proton collisions [4]. The TAG system is composed of the
actual metadata, residing in relational databases, and services
that can be used to access the data, make queries and extract
data in a format suited for further physics analysis. The
data as well as the services are distributed worldwide. In
such a case a well-defined mechanism to direct requests to
appropriate data sources and (web) services is needed.

While the above described application is the main moti-
vational scenario, we are seeking to adopt our approach to
other service selection challenges. In fact, by proposing a
hybrid approach, the goal is to cover application scenarios
presenting different characteristics. To this end, we are
applying our study to a second use case, taken from a
University information system. UCETIS, which stands for
University Cross European Transfer of Information Sys-
tem [5], has been initiated at the University of Vienna.
Many European universities have a heterogeneously grown
IT-infrastructure. Requirements arise both from legal aspects
and from the organizational structure that typically differs a
lot from institution to institution. It is thus a challenge to
seamlessly access this distributed data, and join over several
sources in order to aggregate relevant information.

In order to allow for optimization, the building blocks of
the systems have to be known, described and monitored. The
modeling and monitoring of the TAG system is described in
detail in [17]. In the UCETIS use case, it is more difficult to
gather detailed information about the involved components.



In general, the two application domains differ in several as-
pects. The TAG system is centrally controlled, i.e. there is a
central management unit aware of all the system components
and the changes affecting them. These changes (such as
added or removed deployments) do not happen often and are
in general known well in advance, allowing for a coordinated
commissioning – or decommissioning – of the system and its
controls. Additionally, the components are tightly coupled,
i.e. they are explicitly implemented to be compatible. In the
UCETIS use case on the other hand, there is no central
control instance disposing of the full system information, the
environment is more dynamic and due to the absence of a
central control changes are less predictable. Moreover, each
deployment in UCETS has little or no knowledge about the
other deployments, i.e. the components are loosely coupled.
Consequently, in the TAG use case we dispose of complete
information, taken from system monitoring and logging,
whereas in the UCETIS use case we are confronted with
incomplete information regarding the system statistics.

IV. SYSTEM MODEL

A. System Components

The main building blocks of the considered system are
Services, Deployments, Links and Attributes, as shown in
form of a database schema in Figure 1.
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PK,FK1 AID

 Value

Deployment

PK DID

 Name
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Figure 1. Database Schema of System Components

A Service is an abstract component with a certain func-
tionality. It is often referred to as abstract service. Formally,
a service Si, i ∈ {1, ..., n} is defined by a unique identifier:
Si = id(Si). In our model, a service does not have attributes,
because we are only considering non-functional attributes.
S = S1 ∪ ... ∪ Sn is the union of all services and n = |S|
is the number of services in the considered system.

A Deployment is an instantiation of a service, often
referred to as concrete service. It implements the function-
ality of a service and is characterized by its non-functional
attributes. Formally, a deployment Di, i ∈ {1, ...,m} is
defined as:

Di = {id(Sj), {id(Di), [qi1, ..., qik]}} (1)

where qik are QoS attributes associated with the de-
ployments. As defined in Equation 1, the service that a

deployment is associated with is part of its definition.
D = D1 ∪ ... ∪ Dm is the union of all deployments,
where m = |D| is the total number of deployments in the
considered system.

A Link is a connection between two deployments. For-
mally, a link Li, i ∈ {1, ..., n} is defined as:

Li = {id(Dj), id(Dk), [qi1, ..., qik]} (2)

where id(Di) and id(Dj) refer to two deployments linked
by Link Li. L = L1 ∪ ...∪Ln is the union of all links, and
|L| = m× (m− 1)/2 is the number of links in our system,
assuming that no self-links are considered.

An Attribute is defined as: qi = {id(qi), Domi, ai}
where id(qi) is a function associating a unique identifier
to the attribute, Domi is the Definition Domain and ai is
the value taken by the attribute.

B. Dynamic System Aspects

A service-oriented system as described in the previous
subsection is not static in nature. In particular, it can be
dynamic regarding system configuration and component
status (attributes) aspects. Considering the System Configu-
ration, deployments of specific services can enter or quit the
scenes (by registering respectively unregistering at a central
registry). Additionally, scheduled or unscheduled downtimes
of underlying resources can cause deployments to be down
and thus not reachable. A certain system configuration
consisting of specific (active) deployments for each service
is thus only valid for a certain period in time. Regarding
the Component Status in real-world distributed systems,
attributes of deployments and links are most likely subject to
frequent changes. Furthermore, also attributes that build on
the analysis of historical data – such as the availability – can
evolve over time. A specific attribute value of a component
is thus also only valid for a certain period in time.

For a given point t in time, we define the system status or
system blueprint as the union of the available deployments
and links, with their respective attribute values: S(t) = D∪
L.

As stated above, the attributes of deployments and links
are subject to changes, even at a much higher frequency than
the deployments themselves. As it is unmanageable to record
every small change in an attribute value, we consider levels
for the values of our aggregated performance measures. A
level Va of the attribute value a is defined as a range of
values of attribute a:

Vai
= [vai0

, vai1
[= {x ∈ R|vai0

≤ x < vai1
} (3)

The following operations are defined and feasible on S(t)
(details are described in Section VI):
• Addition of a deployment: S(t+ 1) +Di = S(t) ∪Di

• Subtraction of a deployment: S(t+1)+Di = S(t)\Di



• Attribute level change:
if a(t) ∈ Vai

and a(t+ 1) < vai0
→ a(t+ 1) ∈ vai1−1

if a(t) ∈ Vai and a(t+ 1) ≥ vai1 → a(t+ 1) ∈ vai1+1

Links are implicitly added and subtracted, as they rep-
resent a connection between two deployments. If services,
resources or sites are added or removed, this can be mapped
to adding or removing deployments attached to the respec-
tive component.

V. ALGORITHMIC APPROACHES

A. Algorithms

Two heuristics – a genetic and a blackboard algorithm
– are proposed for approaching the above mentioned chal-
lenges. Additionally, a random walk (exhaustive search) is
used as baseline for assessing the quality of the solutions
achieved with the heuristics. In general, the input to the
algorithms is an abstract workflow, i.e. an ordered list of
services (s1, s2, . . . , sn). They all use a common knowledge
base regarding existing deployments, links and attributes.
The output of the optimization process is an ordered list of
deployments (d1, d2, . . . , dn) corresponding to a concrete
workflow feasible for the abstract input workflow.

1) Random Walk: The random walk is an exhaustive
search algorithm evaluating all possible paths in a graph.
Applied to the concrete scenario, the random walk evaluates
all possible deployment combinations corresponding to the
input workflow and returns the solution with the highest
quality, e.g. with the maximum performance indexes. With
an increasing problem space, the runtime performance of the
random walk grows exponentially. In this regard it cannot
compete with heuristic approaches, but as it is an exact
search it has been used to determine the best solution as
benchmark. The random walk is listed in Algorithm 1.

D(1) = findInitial(base=s1);
foreach d1 in D(1) do

assignQuality(d1);
end
for pos = 1 to n do

foreach dpos in D(pos) do
D(pos + 1) += findSuccessors(origin=dpos, base=spos+1);
foreach dpos+1 in D(pos + 1) do

assignQuality(dpos+1);
end

end
end
solution = maxQuality(dn in D(n));

Algorithm 1: Random Walk Algorithm

2) Genetic Algorithm: A chromosome is represented as
an ordered list of deployment names or references. Each
chromosome corresponds to a possible solution. The pop-
ulation is a set of chromosomes at a given generation,
i.e. iteration of the algorithm. The maximum number of
generations is an input parameter to the algorithm. The
fitness is computed based on available and relevant QoS
attributes. The exact function for computing the fitness of
individuals is dependent on the considered problem.

The genetic algorithm is listed in Algorithm 2 and its steps
are briefly explained in the following:

• Initialization of a random population with individuals
that are chosen randomly out of all possible ones. An
individual corresponds to a concrete workflow. The size
of the population is an input parameter to the algorithm.

• Evaluation of the fitness – or quality – of each in-
dividual in the population, computed according to the
custom fitness function.

• Selection of individuals for the next generation. In
our implementation, a classical roulette wheel selec-
tion [18] has been chosen for the presented algorithm.
In this strategy, the survival probability of a chromo-
some is proportional to its fitness, i.e. each chromosome
is copied n times, where n is the fitness value casted
to an integer. Then, a random selection is performed,
giving the fitter individuals a higher chance to be
selected for the next generation.

• Crossover corresponds to an operation in which two
chromosomes called the parents are combined and
breed two children. Concretely, the input abstract work-
flow is split at a certain position, the first part is
taken from one parent, and the tail from the other one.
Crossover only happens at a given probability that is
set as an input parameter to the algorithm.

• Mutation refers to an operation that produces sponta-
neous random changes in chromosomes, i.e. a single
gene is replaced by another one, with a certain proba-
bility that also has to be set as an input parameter.

Pop(0) = initializePopulationRandomly(S);
for t = 0 to generations do

foreach chromosome in Pop(t) do
evaluate(Pop(t));

end
Pop′(t) = rouletteWheelSelection(Pop(t));
crossover(Pop′(t), crossover rate);
mutate(Pop′(t), mutation rate);
Pop(t + 1) = Pop′(t);

end
Algorithm 2: Genetic Algorithm

In additional to the sequential genetic algorithm shown in
Algorithm 2, a parallel version has been implemented and
tested, as a way of exploring tuning possibilities. Several
parallelization techniques exist for genetic algorithms, as
described and classified in [19] and [20]. The tested parallel
genetic algorithm implements a distributed fitness evalua-
tion, i.e. the individuals from a population are divided into n
groups as many processes as groups are spawned to compute
the fitness in parallel. This parallelization is also referred to
as global parallelization or master-slave model [19].

3) Blackboard: A blackboard – initially developed in
the area of artificial intelligence [21] – implements an A∗-
algorithm to heuristically solve NP-hard problems. It is
especially suited for complex problems with incomplete



knowledge and uncertainties regarding the attributes and the
behavior of the involved components.

In general, a blackboard consists of the three components.
A global blackboard represents a shared information space
containing input data and partial solutions. In our imple-
mentation, the information consists of a list of deployments,
links and their attributes (performance indexes) stored in
a data store. A knowledge base is composed of several
independent regions, each of which is owned by a single
expert disposing of specific knowledge. The global black-
board acts as a “mediator”, allowing the different regions
to communicate. In our implementation, the regions are
the deployments that have to be selected for each abstract
service in the input workflow. The control component
defines the course of activities (phases) required to perform
the optimization problem.

The blackboard mechanism is listed in Algorithm 3. A
cost-based decision tree is generated based on cost esti-
mations for the visited paths. As shown in Algorithm 3,
the expansion of promising deployments for a step in the
workflow is handled by an OpenList and BlockedList.
The OpenList contains all list of possible steps (deploy-
ments to choose). Each of these steps is rated by applying
a cost function that sums up the costs of past decisions and
the cost of the next step. Considering this total cost value
the cheapest step (deployment) is chosen for the next step
in the optimization approach. The BlockedList contains
steps (deployments) that do not fulfill the given requirements
and therefore must be excluded from the set of possible
solutions.

OpenList = expand(s1); BlockedList = [];
while OpenList 6= [] do

Act = best(OpenList); OpenList \= Act;
if Act == Goal then

return Act;
end
foreach dx in expand(Act) do

dx.costs = Act.costs + h(dx.costs);
if dx /∈ OpenList ∧ dx /∈ BlockedList then

OpenList += dx;
else

if dx.costs ¡ OpenList[dx.id].costs then
OpenList[dx.id] = dx;

end
end

end
end

Algorithm 3: Blackboard Algorithm

As for the genetic algorithms, a parallel version of the
blackboard has been implemented and tested. As first proof-
of concept, this has been realized using intra-parallelism, i.e.
parallel execution of the expansion phases.

B. Simulation Environment

We initially implemented the algorithms in Python and run
them sequentially on local machines. For each execution the
required time and the optimization quality of the obtained

solution have been measured. To tune the algorithms and re-
duce the overall execution time, parallelization possibilities
have been explored. To allow for parallelization in Python
several possibilities exist, such as using threads or leveraging
a specific python library (e.g. parallel python or MPI for
python). However, moving the implementation to a Cloud
infrastructure allows us to take advantage of powerful ex-
isting infrastructures and development environments, using
the Cloud PaaS (Platform-as-a-Service) level. As a major
requirement this platform must natively support Python
and allow for parallel execution. After an investigation of
existing platforms, we chose the Google App Engine (GAE)
as basis to implement the algorithms on. The GAE fulfils our
requirements, is well documented and provides a sufficient
amount of free quota for CPU time, API calls and storage
capicity. Moreover, in a later extension of our experiments
– requiring a higher number of resources – we will be able
to use them on a pay-per-use base.

As depicted in Figure 2 we make use of the following
components and APIs of the GAE.
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Figure 2. Google App Engine Architecture

In the RESTful Core API, each algorithm
implementation has to inherit from either
AlgorithmSequential (in case of a sequential
implementation) or AlgorithmParallel (in case of
a parallel implementation). As depicted in Figure 3 both
classes are subclasses of the AlgorithmHandler which
required the implementation of two abstract methods
(doGet, doPost). Moreover, some utility methods exist
that encapsulate some often used functionality and allow
for a more convenient code parallelization (see stateless
API). The enqueue* methods allow to either spawn a
new task, or perform an asynchronous urlfetch command.
The dequeue* methods instead allow to collect the results
of either the called task or the asynchronously fetched site.



For our algorithm implementation the system state of a
simulated system environment is stored within the Stateful
API datastore of the GAE, in terms of components (services,
deployments and links) and their attributes (e.g. a randomly
generated performance index). One the other hand the mem-
cache API allows to store objects for a certain amount of
time and therefore can be seen as a caching machanism.
In our approach we heavily make use of the memcache for
our parallel algorithm implementations to allow them for an
easy data exchange between different tasks (see taskqueue
API) or between the master task and its worker tasks (see
urlfetch API).

Among various existing Stateless APIs for Python we
only make use of three fundamental ones, the users API, the
taskqueue API and the urlfetch API. The users API allows us
to distinguish between casual users and administrators within
our simulation testbed site. The taskqueue API and urlfetch
API are used to enable for parallelism, because due to some
security and scalability reasons the Python interpreter runs
within a “sandbox” in the GAE and therefore does not allow
for processes, threads, or socket connections. The taskqueue
API allows to create new tasks within an ongoing web
application request. One limitation of this approach is that
the master program looses the control flow, because the tasks
are not able to return values. Therefore, the master program
has to track the number and kind of created tasks and the
tasks have to conclude by (re)starting the caller. However,
this is not proper to the GAE, other Cloud providers also
make use of task-queue-like systems, such as Amazon SQS
or Azure Queue. Using the urlfetch API instead, the master
program does not loose the flow of control and can wait for
results of its workers. However, due to a strict time limit of
ten seconds for each urlfetch call only very small parallel
programs can be realized.

algorithm::AlgorithmSequential

webapp::Request

webapp::Response

algorithm::AlgorithmParallel

webapp::RequestHandler

/<algorithm>/seq

/<algorithm>/par

list() dict()

#doGet(ein request : Request) : Response
#doPost(ein request : Request) : Response
+handleParams() : dict()
+enqueueTask(ein url : string, ein params : dict())
+dequeueTask() : int
+enqueueFetch(ein url : string, ein params : dict())
+dequeueFetch() : int

-params : dict()

algorithm::AlgorithmHandler

Figure 3. Algorithm Interface Classes

C. Evaluation and Discussion

A series of benchmarks tests have been carried out based
on the setup described above. The sequential and parallel
versions of the blackboard, genetic and random walk algo-
rithm were run on different datasets, i.e. on an increasing
number of deployments, resulting in an increasing number

of choices. For each run, benchmarks have been stored in
the datastore. A benchmark entry consists of the algorithm
and mode (sequential/parallel) producing the benchmark,
a timestamp, the system configuration (deployments per
service), the total time, the reached quality and the achieved
solution. The corresponding data model is depicted in Fig-
ure 7. The results are shown in Figures 4, 5 and 6 and the
main findings are summarized in the following.
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Figure 4. Runtime Scalability per Algorithm

The reason why only small setups could be benchmarked
using the random walk is a time limitation per requests in the
GAE. Each request is running into a DeadlineExceeded
error if it does not respond within 30 seconds, which are
reached when considering 20 deployments.

In terms of runtime performance and scalability, in general
the genetic algorithm outperforms the blackboard, except
for a small number of deployments. This is in principle
compliant with the results from our previous work [1].
However, it has to be noted that in [1] the threshold was
at about 100 deployments, whereas in the present case it is
much lower. In the current setup, benchmark runs are being



0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

tim
e 

in
 s

ec
on

ds

Number of deployments

All Sequential Algorithms

RandomWalk Seq
Blackboard Seq

GA Seq

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

tim
e 

in
 s

ec
on

ds

Number of deployments

All Parallel Algorithms

RandomWalk Par
Blackboard Par

GA Par

Figure 5. Runtime Scalability Comparison

46

48

50

52

54

56

58

60

62

64

5 10 15 20 25 30 35 40 45 50

qu
al

ity

Number of deployments

Blackboard Algorithm Seq/Par

Blackboard Seq
RandomWalk Seq

GA Seq

Figure 6. Quality (Fitness) Comparison

made with systems up to only about 50 deployments, due to
the urlfetch (10 seconds) and taskqueue (30 seconds) time
limitations of the Google App Engine. To completely verify
previous results, tests with bigger setups would have to be
made.

In general, the blackboard outperforms the genetic algo-
rithm regarding the quality (fitness) of the solution found.
As shown in Figure 6, differences in the quality reached start
appearing for system setups with more than 20 deployments
in total. Changing the input parameters of the genetic algo-
rithm (e.g. choosing a bigger population size and a higher
number of generations) would improve the fitness reached,
but would affect the runtime performance. The parameters
have been chosen in a way so that the fitness achieved with
the genetic algorithm is not less then 90% of the optimum.

As shown in Figure 4, the parallelization of the algorithms
worsens their runtime instead of improving it, which we con-
sider as an implementation artifact. Neither the urlfetch nor
the taskqueue version are efficient for such small problems,
i.e. the overhead added by those mechanisms does not stand
in relation to any computational gain. It is to be mentioned
that the chosen environment (the Google App Engine) has

not been designed for high-performance applications and
computations; but for interactive, short request handling. We
were thus not expecting real high-performance paralleliza-
tion, but consider the implementations as a proof-of-concept.
An exception is the random walk, where the parallel version
outperforms the sequential one, but is feasible only in very
small setups. Again this is due to the hard time restrictions
for requests from a taskqueue or urlfetch call.

VI. HYBRID ALGORITHM FOR SERVICE SELECTION

As can be seen from the evaluation results presented in
Section V, there is a trade-off between execution time and
attained quality of the optimization results, e.g. the concrete
workflow of deployments. We thus envision a hybrid ap-
proach consisting of a combination of the blackboard and
genetic algorithm. We extend the optimization framework
with a caching mechanism that allows to reuse workflows
of previously computed optimizations whenever a system
environment has not or only slightly changed. In the future,
we plan to also evaluate and integrate other algorithms into
the approach.

A. Motivation
The basic idea behind the hybrid approach is to take

advantage of the strengths of both participating algorithms
in terms of runtime and achieved quality of the result, in
their respective value domain. To decide then to apply which
algorithm, a mechanism has to be established that keeps
track of already computed solutions and the system state
when the solution was created. A solution (workflow of
concrete deployments) might fit well in the future and can
therefore be cached, especially when the system environment
– in terms of services, deployments and their interconnection
– stays the same or changes only slightly. In a stable system
environment optimization results are reusable and therefore
we define this as a “cache hit”. On the opposite, in unstable
environments, when system components change frequently,
a previously computed optimization has to be repeated, we
call this a “cache miss”. In the two mentioned extreme cases
(cache hit and miss) the decision from the algorithmic point
of view is very clear. However, in some cases in between –
where only some deployments of the solution have changed
– we will be able to reuse a fraction of a previously achieved
optimization solution and use it as a starting point for e.g.
the seed population of a genetic algorithm. Therefore a key
issue is to determine the degree of similarity between a past
and actual system state. How a system state is defined is
outlined in Section IV. The following subsections detail how
such system states can be stored and compared. Based on
the obtained similarity index we are able to make reasonable
decision regarding which optimization algorithm to apply.

B. System State Preservation
At first it has to be clarified how a system states can

be stored and compared. As pointed out in Section IV, a



system is described by its components (services, deploy-
ments, links) and their attributes, valid at a given point or
period in time. For preserving a computed solution and the
corresponding system state, we store a map of components
(d1...dn; l1...ln−1), in case of a sequential workflow, where
two deployments are connected via a link. Each component
itself has to store a map of the attributes that have been
considered in the optimization approach (q1, ..., qk).

Component

PK id

 created
 modified
 type
 name
FK1 base
FK2 origin
FK3 dest

Attribute

PK id

FK1 compid
 created
 identifier
 name
 value

Benchmark

PK id

 key
 created
 algorithm
 mode
 deployments
 run
 solution
 quality
 totaltime

Figure 7. Google App Engine Datastore Model

In Figure 7 the denormalized version of the database
schema of system components (Figure. 1) is presented. It
allows to efficiently query the GAE datastore. It consists of
a Component store and an Attribute store. A component has a
unique id, a created and modified timestamp, a type (service,
deployment, link), a name, a base (if deployment points
to the corresponding service) and a origin and destination
attribute (for qualifying a link). An attribute has a unique
id, a created timestamp, an identifier, a name, and a value
and is related to a specific component (via the compid).
This notion enriches the model of a system environment
with time-relevant information that is mandatory for the
similarity reasoning process, and provides information about
how much a system state changes. The Benchmark table
stores all information about optimization runs and is used to
perform the evaluation.

Especially the attributes created and modified are impor-
tant, as they document the life-cycle of a component and/or
its attributes. Thus, events that occur during the lifetime
of a system environment can be captured and expressed
as changes in these timestamp attributes. Such events are
comparable to traditional CRUD-operations and may include
the creation, update or delete of components and/or their
attributes.

In order to preserve a system state for a later comparison
with a new system state, the following values are required:

1) The timestamp indicating when a solution has been
computed.

2) The found solution that contains the query (chain of
services), the chosen deployments, their interconnect-
ing links and all corresponding attributes that were
considered in the optimization (e.g. the performance
index).

C. Similarity Index Computation

Based on the preserved system state covering the optimal
service selection strategy (solution) and its components we
have to compute a similarity index that reflects the degree
a system state has changed. The obtained similarity index
provides a foundation for decisions regarding the choice
of the most appropriate optimization algorithm to find a
”good” or even the optimal solution. A similarity index of
1.0 means that the environment has not changed and so the
existing solution can be reused. A similarity index of 0.0
means that the environment and especially the components
that build up the previous solution have changed and thus
the existing solution cannot be reused.

Since the comparison of system states is not a trivial
task, a method has to be developed to rate the similarity
of two system states. To solve this issue, a blackboard-
based approach can again be chosen. In a very simplistic
approach one of the following two expert strategies for such
a similarity classification can be used:

1) Component-level Classification: In this approach the
components (deployments, links) of a given solution
are compared with the currently (at the time of the
optimization) existing components. The comparison is
based on the created and modified timestamps of the
components. For example, if a new deployment for a
service (that is part of the solution) is available, the
created timestamp will be newer than the timestamp
of the deployment in the last solution. Therefore,
this deployment might not be the optimal one any
more. The same applies to links and attributes. The
changes of all components and attributes are rated and
aggregated to a similarity index. In a simple setup the
changes are rated as follows:
• components are treated equally: the impact (imp)

of a single component is as listed in Equation 4,
where n is the number of deployments and n− 1
is the number of links between deployments.

• changes due to occurred system events are rated
according to the relation of affected to total com-
ponents, as suggested in Equation 4).

• the overall similarity index is sitotal as listed in
Equation 4.

impC =
1

n+ (n− 1)

siC = impC ∗ (1−
∑

Dnewer∑
Dtotal

)

sitotal =

2n−1∑
i=1

siC (4)

2) Chain-level Classification: This classification allows
to rate a solution according to the deployment patterns



(chains). If a solution is built of four deployments in
a chain, we can identify three pairs of deployments,
two triples, and one (total) chain of four deployments.
When a system change occurs, the longest chain that
is not affected by the change can be identified and
reused as part of the solution. For example, if a
change affects only the last (fourth) deployment of
the previous solution, the sequence consisting of the
first, second and third deployment can be reused. The
similarity index is computed as listed in Equation 5.

sitotal =
chainunchanged length

chaintotal length
(5)

With the help of these two techniques it is possible to
compare two system states and quantify their similarity.

D. Hybrid Algorithm for Service Selection

The hybrid approach uses the similarity index to decide
which optimization strategy is actually best and promises a
good and fast solution, depending on the system state and
the recent changes. In the best case a solution can be reused,
in the worst case the system state has changed radically and
the optimization has to be repeated. As depicted in Figure 8,
the hybrid approach defines some border values based on the
similarity index that lead to different optimization strategies.

similarity classification

genetic algorithm

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

blackboard

similar different

dramatical change
(blackboard)

moderate change
(competitive balooning)

slight change
(genetic algorithm)

Figure 8. Similarity Classification for the Hybrid Algorithm

• Similar (1.00): The system states match completely
and thus the previous solution can be reused. This
means that for the observed time frame the system
state remains static, without affective changes for the
components that build up the solution.

• Slight Change (0.99-0.75): This system state is prac-
tically indifferent to the preserved system state. Thus
an already computed optimization is good enough and
only has to be refined according to the changed com-
ponents of the solution. Therefore we can apply the ge-
netic algorithm, that has the best runtime performance
and can benefit from the previous solution that is put
into the initial population.

• Moderate Change (0.75-0.50): For this similarity re-
gion it is more difficult to decide which algorithm
leads to the best result. Both the genetic algorithm
and the blackboard can be used. They can be started
in parallel, so that the first algorithm that finishes its
execution provides the new solution. This technique
is called competitive ballooning and requires enough
computing resources. In the genetic algorithm case the
initial population is seeded with the given solution. The
blackboard makes use of already computed cost values
of the unchanged parts of the solution.

• Radical Change (0.50-0.01): This is a drastic change
in the system state, leading to a need to restart the
whole optimization process, because only minor parts
of the solution (in terms of deployments) have not
changed since the last computation. Here a blackboard
should be applied because it usually delivers a solution
with a higher quality rating than the genetic algorithm
(according to our simulation runs in Figure 6).

• Different (0.00) As in the radical change case the
optimization has to be repeated.

VII. CONCLUSION

In this paper, we proposed a description of the basic,
high-level building blocks of a dynamic distributed service-
oriented system, including a categorization of the changes
that can affect such a system. This foundation allows to
apply different algorithmic approaches on a common simu-
lated system setup. To evaluate these algorithms for service
selection, a Cloud-based framework on the Google App
Engine has been implemented and three algorithms have
been deployed, a random walk serving as baseline, a genetic
algorithm and a blackboard. Built-in classes allow for ex-
tensive benchmarking. Performance indexes on deployments
and links have been assumed as aggregated QoS values.
The overall goal is to select deployments for a given input
workflow in a way to maximize the overall performance
index. It has been confirmed that the blackboard slightly
outperforms the genetic algorithm for a small number of
deployments, whereas the genetic algorithm performs better
for large systems, while however reaching a slightly lower
overall quality. There is thus a trade-off between runtime
performance and achieved results. These characteristics led
us to propose a hybrid approach combining the strengths of
both algorithms in their respective range. The main idea of
this hybrid approach is to implement a caching mechanism,
where the system setup is stored and associated with a good
result. When the optimization starts again, with the same
requested workflow, the first step is to detect and classify the
changes that affected the system since the last result has been
computed. According to the impact of these changes, it is
decided if the old result can be reused, if a genetic algorithm
is launched using the previous result in the initial population,
or if the blackboard algorithm is run from scratch.



The next step is to complete the implementation of the
hybrid approach and evaluate it. This will require a more
complex evaluation environment, as real system usage as
well as system changes have to be simulated. As a next
step, it is further interesting to include more algorithms
in our framework, evaluate them, and broaden the hybrid
approach to a decision framework capable of launching
different algorithms, based on the actual system status.
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